Direct inhibition of the cloned Kv1.5 channel by AG-1478, a tyrosine kinase inhibitor.
نویسندگان
چکیده
The action of tyrphostin AG-1478, a potent protein tyrosine kinase (PTK) inhibitor, on rat brain Kv1.5 channels (Kv1.5) stably expressed in Chinese hamster ovary cells was investigated using the whole cell patch-clamp technique. AG-1478 rapidly and reversibly inhibited Kv1.5 currents at 50 mV in a concentration-dependent manner with an IC50 of 9.82 microM. AG-1478 accelerated the decay rate of inactivation of Kv1.5 currents without modifying the kinetics of current activation. Pretreatment with the structurally dissimilar PTK inhibitors (genistein and lavendustin A) had no effect on the AG-1478-induced inhibition of Kv1.5 and did not modify the AG-1478-induced current kinetics. The rate constants for binding and unbinding of AG-1478 were 1.46 microM(-1) x s(-1) and 10.19 s(-1), respectively. The AG-1478-induced inhibition of Kv1.5 channels was voltage dependent, with a steep increase over the voltage range of channel opening. However, the inhibition exhibited voltage independence over the voltage range in which channels are fully activated. AG-1478 produced no significant effect on the steady-state activation or inactivation curves. AG-1478 slowed the deactivation time course, resulting in a tail crossover phenomenon. Inhibition of Kv1.5 by AG-1478 was use dependent. The present results suggest that AG-1478 acts directly on Kv1.5 currents as an open-channel blocker and independently of the effects of AG-1478 on PTK activity.
منابع مشابه
Modulation of Kv1.5 currents by protein kinase A, tyrosine kinase, and protein tyrosine phosphatase requires an intact cytoskeleton.
The regulation of cardiac delayed rectifier potassium (Kv) currents by cAMP-dependent protein kinase (PKA) contributes to the control of blood pressure and heart rate. We investigated the modulation by PKA and protein phosphatases of cloned Kv1.5 channels expressed in Xenopus laevis oocytes. Exposure of oocytes to activators of PKA (100 nM forskolin, 1 mM 8-bromo-cAMP, or 1 mM 3-isobutyl-1-meth...
متن کاملAssociation of Src tyrosine kinase with a human potassium channel mediated by SH3 domain.
The human Kv1.5 potassium channel (hKv1.5) contains proline-rich sequences identical to those that bind to Src homology 3 (SH3) domains. Direct association of the Src tyrosine kinase with cloned hKv1.5 and native hKv1.5 in human myocardium was observed. This interaction was mediated by the proline-rich motif of hKv1.5 and the SH3 domain of Src. Furthermore, hKv1.5 was tyrosine phosphorylated, a...
متن کاملAHEART February 47/2
Iwasaki, Hiroaki, Satoru Eguchi, Hikaru Ueno, Fumiaki Marumo, and Yukio Hirata. Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am. J. Physiol. Heart Circ. Physiol. 278: H521–H529, 2000.—We have studied whether activation of epidermal growth factor receptor (EGFR) is involved in stretch-induced extracellular signal-regulated kinase 1/2 ...
متن کاملMechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor.
We have studied whether activation of epidermal growth factor receptor (EGFR) is involved in stretch-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation and protein synthesis in cultured rat vascular smooth muscle cells (VSMC). Cyclic stretch (1 Hz) induced a rapid (within 5 min) phosphorylation of ERK1/2, an effect that was time and strength dependent and inhibited by an EGFR...
متن کاملEGF mediates calcium-activated chloride channel activation in the human bronchial epithelial cell line 16HBE14o-: involvement of tyrosine kinase p60c-src.
Particulate atmospheric pollutants interact with the human airway epithelium, which releases cytokines, chemokines, and EGF receptor (EGFR) ligands leading to proinflammatory responses. There is little information concerning the short-term effects of EGFR activation by extracellular ligands on ionic regulation of airway surface lining fluids. We identified in the membrane of human epithelial br...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 282 6 شماره
صفحات -
تاریخ انتشار 2002